Cellular microenvironments play a crucial role in determining stem cell fates, yet conventional techniques offer limited control over these niches. Thus, there is a need for tools that can accurately regulate stem cells.
Microfluidic technologies excel in investigating niche roles on cells and tissues, as well as establishing in vitro cell-based assays, due to their precise control of liquid flow, 3D geometry creation, minimal reagent consumption, and automation capabilities. Notably, microfluidic devices enable the manipulation of both chemical and physical cellular conditions within a compact space, allowing for robust and high-throughput cell culture and assays. This makes microfluidic technology an ideal platform for recreating in vivo niche conditions and investigating unresolved niche mechanisms.
In previous research, I developed high-throughput microfluidic platforms to create multiple 3D artificial cellular environments, identifying optimal conditions for specific cellular functions. By utilizing this platform, we aim to screen artificial microenvironments that facilitate the differentiation of targeted tissue cells derived from human pluripotent stem cells (hPSCs).
Our findings will help establish new methodologies for precisely inducing hPSC differentiation and contribute to future hPSC applications in tissue engineering and regenerative medicine.
Related Publications:
- Fabrication of a Multiplexed Artificial Cellular MicroEnvironment Array, Y. Mashimo, M. Yoshioka, Y. Tokunaga, C. Fockenberg, S. Terada, Y. Koyama, T. Shibata-Seki, K. Yoshimoto, R. Sakai, H. Hakariya, L. Liu, T. Akaike, E. Kobatake, S.E. How, M. Uesugi, Y. Chen, K. Kamei*, Journal of Visualized Experiments (JoVE), 139, e57377 (2018); DOI:10.3791/57377
- Integrated Heart/Cancer on a chip to reproduce the side effects of anti-cancer drug in vitro, K. Kamei,* Y. Kato, Y. Hirai,*, S. Ito, J. Satoh, A. Oka, T. Tsuchiya, Y. Chen and O. Tabata, RSC Advances, 7, 36777-36786 (2017); DOI: 10.1039/C7RA07716E (*Corresponding authors)
- Microfluidic-nanofiber hybrid array for screening of cellular microenvironments, K. Kamei‡*, Y. Mashimo‡, M. Yoshioka, Y. Tokunaga, C. Fockenberg, S. Terada, M. Nakajima, T. Shibata-Seki, L. Liu, T. Akaike, E. Kobatake, E. S. How, M. Uesugi and Y. Chen*, Small, 13(18), 1603104 (2017); DOI: 10.1002/smll.201603104 (*Corresponding authors; ‡These authors contributed equally to this work.)
- Characterization of phenotypic and transcriptional differences in human pluripotent stem cells under two- and three-dimensional culture conditions, K. Kamei*, Y. Koyama, Y. Tokunaga, Y. Mashimo, M. Yoshioka, C. Fockenberg, R. Mosbergen, O. Korn, C. Wells and Y. Chen*, Advanced Healthcare Materials, (2016);
- Directing and boosting of cell migration by the entropic force gradient in polymer solution, T. Fukuyama, A. Fuke, M. Mochizuki, K. Kamei and Y. T. Maeda, Langmuir 31(46), 12567–12572 (2015); DOI: 10.1021/acs.langmuir.5b02559
- 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients, K. Kamei*, Y. Mashimo, Y. Koyama, C. Fockenberg, M. Nakashima, M. Nakajima, J.J. Li and Y. Chen*, Biomed. Microdev. 17(2), (2015); DOI: 10.1007/s10544-015-9928-y (*Corresponding authors)
- Phenotypic and transcriptional modulation of human pluripotent stem cells induced by nano/microfabrication materials, K. Kamei,‡* Y. Hirai,‡ Y. Makino, M. Yoshioka, Q. Yuan, M. Nakajima, Y. Chen, and O. Tabata,* Advanced Healthcare Materials, 2(2), 287-291 (2013); DOI: 10.1002/adhm.201200283 (*Corresponding authors; ‡These authors contributed equally to this work.)
- Integrated and diffusion-based micro-injectors for open access cell assays, X. Li, L. Liu, L. Wang, K. Kamei, Q. Yuan, F. Zhang, J. Shi, A. Kusumi, M. Xie, Z. Zhao and Y. Chen, Lab Chip, 11(15), 2612-2617 (2011)
- Microfluidic Image Cytometry for Quantitative Single-Cell Profiling of Human Pluripotent Stem Cells in Chemically Defined Conditions, K. Kamei,† M. Ohashi, E. Gschweng, Q. Ho, J. Suh, Z. T. F. Yu, J. Tang, A. T. Clark, A. D. Pyle, M. A. Teitell, K.-B. Lee, O. N. Witte and H.-R. Tseng,†, Lab. Chip, 10(9), 1113-1119 (2010) (†Corresponding authors)
- An integrated microfluidic culture device for quantitative analysis of human embryonic stem cells, K. Kamei*,S. Guo*, Z. T. F. Yu*, H. Takahashi, E. Gschweng, X. Wang, C. Suh, J. Tang, J. McLaughlin, O. N. Witte, K.-B. Lee and H.-R. Tseng, Lab. Chip, 9(4), 555-563 (2009) (*These authors contributed equally to this work.)
- An integrated microfluidic chip for parallel culture and multiparametric analysis of murine and human cells, Z. T. F. Yu*, K. Kamei*, H. Takahashi, C. J. Shu, G. W. He, R. W. Silverman, C. G. Radu, O. N. Witte, K.-B. Lee and H.-R. Tseng, Biomed. Microdev., 11, 547-555 (2009) (*These authors contributed equally to this work.)